

Through E-mail

MIN/2022-22083

To,
The Director
Ministry of Environment & Forest and Climate Change
Regional Office, Western Region
Kendriya Parayavaran Bhavan
Link Road No. 3
E-5 Ravishankar Nagar
Bhopal- 462016

Sub: -

Six Monthly Compliance report of additional limestone deposit over 66.434 ha area at village

Mankahari, Tehsil Rampur Baghelan, Dist. Satna (M.P.) of M/s Prism Johnson Ltd.

Ref: -

Your letter No. J-11015/8/2000- IA.II (M) dated 14/02/2001.

Dear Sir,

This is in reference the above we are enclosing herewith the six-monthly compliance report (period October 2021 to March 2022) of the environmental clearance granted over 66.434 ha area for additional limestone deposit at village Mankahari, Tehsil Rampur Baghelan, Dist. Satna (M.P.) vide letter no. J-11015/8/2000- IA.II (M) dated 14/02/2001, along with necessary enclosures.

We Hope you will find the same in order.

Thanking you.

Yours faithfully,

For Prism Johnson Limited

Mines Manager

Prism Cement Limestone Mines

(Cement Division - Unit II)

COMPLIANCE OF CONDITIONS AS STIPULATED BY MoEF VIDE LETTER NO. J - 11015 / 8 / 2000 - I A. II (M) DATED 14.2.2001 FOR ADDITIONAL LIMESTONE DEPOSIT OVER 66.434 HECT. AREA IN VILLAGE MANAKAHARI, TEHSIL RAMPUR BAGHELAN, DIST. SATNA (M.P.)

1.	The environmental clearance would be applicable 66.434 hect . lease area		
A.	Specific Conditions :		
(i)	Mining should be carried out 500 m away from the Rewa – Satna railway track.	\Rightarrow	No mining activities are carried out within 500 m vicinity of Rewa – Satna Railway track.
(ii)	The topsoil should be stacked properly with adequate measures at earmarked site. It should be used for reclamation and rehabilitation of mined out area.	⇧	Topsoil is being used for reclamation and rehabilitation of the mined out area. No outside stacking is being done.
(iii)	OB dumps should be stacked at earmarked dump site(s) only on temporary basis. Concurrent back – filling and reclamation should be carried out from the 3 rd year of operations.	⇔	Reclamation of the mined out area has been started from 3 rd year of operations as stipulated in the condition. 12.83 Ha. of mined out area has been reclaimed up to March 2022.
			No waste rock generated from April 2021 to March 2022 to be used in backfilling of the mined out area.
(iv)	A green belt of adequate width by planting the native plant species all around the ML area, roads, OB dump sites etc. should be raised in consultation with local DFO / Agriculture Department.	\Rightarrow	Green belt of adequate width is being developed. Year wise details of the plantation carried out so far are given in Annexure I .
			A rose garden has been developed in the colony.
			A nursery has also been developed where various types of saplings are prepared for plantation.
			Saplings planted April 2021 to March 2022 were 500 and cumulative plantation till March 2022 is 25056.
(v)	Drill should be operated with dust extractors or only wet drilling should be adopted.	↔	Drill machine IBH 10 of Atlas Copco is in operation. This machine is fitted with water sprinkler that settles the dust generated at the time of drilling and thus prevents it from going into the atmosphere.
(vi)	Controlled blasting should be carried out.	\Rightarrow	Controlled blasting is being practiced.

(vii)	Check dam and siltation ponds of appropriate size should be constructed to arrest silt and sediments flow from OB and mineral dumps. The water so collected should be utilized for watering mine area, roads, greenbelt, etc. The drains should be regularly desilted and maintained properly.	₽	Garland drain and siltation pond have been constructed to arrest the silt and sediment flow.
(viii)	Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring should be done four times a year— premonsoon April / May, Monsoon (August), Post—monsoon (November) and winter (January). Data thus collected should be sent at regular intervals to MoEF.	₽	Being done. Ground water level monitoring data of post -monsoon (Month wise), have been given in Annexure II. Quality monitoring report of the ground water of the wells/bore holes is given in Annexure III.
(ix)	Crusher should be installed and operated with adequate capacity de-dusting arrangement	₽	Crusher has already been installed with adequate capacity of de-dusting arrangement like bag - filters. Continuous water sprinkling arrangement at crusher hopper has also been made for suppressing the dust generated during unloading of the mineral in crusher hopper.
(x)	A detailed mine decommissioning plan should be submitted to MoEF 5 year in advance for approval.	₽	Will be submitted.
B.	GENERAL CONDITIONS	Π	
(i)	No change on mining technology and scope of working should be made without prior approval of the Ministry of Environment and Forests.	\Rightarrow	No changes have been made.
(ii)	No change in the calendar plan including excavation, quantum of limestone, waste / OB dumps should be made.	\Rightarrow	No changes have been made.
(iii)	Four ambient air quality monitoring stations should be established in the core zone as well as buffer zone for SPM, RPM, SO ₂ , NO _X and CO monitoring. Location of the ambient air quality stations should be decided based on the meteorological data, topographical features and environmentally sensitive targets in consultation with the State Pollution Control Board.	₽	Four different monitoring stations are established and air quality is monitored twice in a month.
(iv)	Data of ambient air quality should be regularly submitted to the Ministry including	⇒	Being done regularly and submitted to the ministry and other government

	its Regional Office at Bhopal and the State Pollution Control Board / Central Pollution Control Board once in six months.		agencies. Ambient air quality monitoring results from April 2021 to March 2022 have been given in Annexure IV.			
(v)	Adequate measures for control of fugitive emissions should be taken during drilling and blasting operations, loading and transportation of minerals etc.	$\hat{\Gamma}$	Adequate measures for control of fugitive emission are being taken during drilling and blasting operations, loading and transportation of mineral etc.			
			Drill machine is operated with in- built dust extractor, which arrests the dust generated during the drilling operation.			
			 Water sprinkling is done on the blasted muck after blasting to reduce the dust generation during the loading operation. 			
			Water spraying is continuously done on haul roads.			
(vi)	Adequate measures should be taken for control of noise levels below 85 dB in the	⇒	Being taken.			
	work environment.		Noise monitoring reports from April 2021 to March 2022 have been given in Annexure –V.			
(vii)	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.	\Rightarrow	Personal protective equipments are being provided to all personnel working in dusty area at regular intervals.			
	Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposures to dust and take corrective		Time to time, training and information on health and safety aspects are being imparted by the HRD Deptt. as well as at vocational training centre of the Deptt.			
	measures, if needed.		All employees undergo periodical medical examination under Mines Act at regular intervals.			
(viii)	The funds earmarked for environmental protection measures should be kept in separate account and not diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment & Forests.	分	Envoirmental Expenditure of 2021-22 Particulars Expenditure (Inlakh) 1 Air Pollution Monitoring 0.24 2 Noise Monitoring 0.1 3 Plantation 4.94 4 Dust Control Measure 5.24			

	T		
(ix)	The Regional Office of this Ministry located at Bhopal shall monitor compliance of the stipulated environmental safeguards. The project authority should send one set of EIA / EMP Report and Mining Plan to them and extend full co – operation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring report.	↔	Photocopies of Rapid EIA – EMP Report and Mining Plan have already been sent. Co-operation is being extended to the inspecting Officials.
(x)	The Project authority should inform to the Regional Office located at Bhopal as well as to the Ministry of Environment & Forests regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	₽	Agreed
(xi)	A copy of the clearance letter will be marked to concerned Panchayat / Local NGO, if any, from whom any suggestion / representation has been received while processing the proposal.	⇧	Agreed
(xii)	State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industry Centre and Collector's Office / Tehsildar's Office for 30 days.	↔	
(xiii)	The Project authority should advertise at least in two local newspapers widely circulated around the project, one of which shall be in the vernacular language of the locality concerned informing that the project has been accorded environmental clearance and the copy of the clearance letter is available with the state Pollution Control Board and may also be seen at the web site of the Ministry of Environment and Forests at http://envfor.nic.in.	⇧	The advertisement was published in two of the local newspapers viz. 'Dainik Bhaskar' and 'Naw Swadesh' which was earlier informed vide our letter no. MIN / 104 / 5820A dated 27.3.02.

Annexure 1

Year-wise plantation of 66.434 Ha ML						
S. No.	Year	Number of Plants planted	Greenbelt/ Colony/ CSR			
1	2001-02	1132	0			
2	2002-03	1937	449			
3	2003-04	3522	4387			
4	2004-05	982	571			
5	2005-06	739	0			
6	2006-07	1300	0			
7	2007-08	720	600			
8	2008-09	1104	4000			
9	2009-10	1000	2330			
10	2010-11	1640	7258			
11	2011-12	1400	3698			
12	2012-13	800	3100			
13	2013-14	680	2740			
14	2014-15	1600	2566			
15	2015-16	1000	3200			
16	2016-17	1000	37876			
17	2017-18	1000	10000			
18	2018-19	1000	15000			
19	2019-20	1000	43364			
20	2020-21	1000	35944			
21	2021-22	500	14468			
	Total	25056	191551			

ECOMEN LABORATORIES PVT. LTD.

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024

Phone No.: 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/23 REPORT NO: ECO LAB/Piezo/GW/1243/12/21 TEST REPORT ISSUE DATE: 05.01.2022

REPORT OF WATER LEVEL MEASUREMENT

Name of the Customer

: M/s. Prism Johnson Ltd. : Village - Mankahari,

Address of the Customer

Tehsil - Rampur Baghelan

Distt.Satna (M.P.)

Measurement by

: Mr. Anish Singh & Manoj Gupta

Date of Measurement

: December 30th, 2021

Sl. No.	Piezometer Name.	Water Level (meter)
1.	Colony Gate	14.76
2.	Behind B Block	15.58
3.	Behind C Block	4.38
4.	Auto Work Shop	13.53
5.	In Front Den	5.41
6.	Rose Garden near boundary	18.90
7.	Rose Garden near Road	18.70
8.	Western Block Mines	11.20
9.	Near New Magzine Mines	11.21
10.	Mankahari Mines	16.58
11.	Mines near Ramprasan	13.41
12.	Side Office Mines	Block

Verified By

Technical Manager

Authorized By

Ouality Manager

----End of Report---

Ecomen Laboratories Pvt. Ltd. Second Floor Hall, House No. B-1/8, Sector-H_Aliganj, Lucknow-226024

ECOMEN LABORATORIES PVT. LTD.

Second Floor Hall, House No. B-1/8, Sector-H, Aliganj, Lucknow - 226 024

Phone No.: 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1525/12/21

TEST REPORT ISSUE DATE: 13.01.2022

TEST REPORT OF DRINKING WATER*

Name of the Company : M/s. Prism Johnson Ltd.

Address of the Company: Village Mankahari, Tehsil Rampur Baghelan

Distt.Satna (M.P.)

Sampling Method

: APHA/ IS: 3025

Sample Collected by

: Mr.Anish Singh

Sample Quantity **Date of Sampling**

: As per requirement.

Date of Receiving

: 29.12.2021

Date of Analysis

: 03.01.2022

Source of Sample

: 03.01.2022 to 07.01.2022 : Plant Site - Bore Well

Sample ID Code

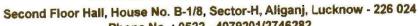
: ELW-15293

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff;2012)	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agrceable	Agreeable
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.39	2.0 -12	6 5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	545.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	136.0	5-1500	200	600
8.	Total Hardness as CaCO3 (mg/l)	APHA, 23 rd Ed. 2017, 2340 A+C	204.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	44.80	5 – 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	32.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.31	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ²⁻ E	87,65	1.0 -250	200,0	400.0
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO ₃ B	12.67	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.14	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.22	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 – IB	BDL	0.1-10		-
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.18	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent
31.	E.coli (Nos/100)	APHA, 23rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent

^{*}The result are related only to item tested.

BDL = Below Detection Limit

Verified By


Authorized By

Quality Manager

Technical Manager

Ecomen Laboratories Pvt. Ltd. Second Floor Hall, House No. B-1/8,

ECOMEN LABORATORIES PVT. LTD.

Phone No.: 0522 - 4079201/2746282

E-mail: contactus@ecomen.in, Website: www.ecomen.in, CIN - U74210UP1989PTC010601,GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/1525/12/21

TEST REPORT ISSUE DATE: 13.01.2022

TEST REPORT OF DRINKING WATER*

Name of the Company : M/s. Prism Johnson Ltd.

Address of the Company: Village Mankahari, Tehsil Rampur Baghelan

Distt.Satna (M.P.)

Sampling Method

: APHA/ IS: 3025

Sample Collected by Sample Quantity

: Mr. Anish Singh : As per requirement.

Date of Sampling

: 29.12.2021

Date of Receiving

: 03.01.2022

Date of Analysis

: 03.01.2022 to 07.01.2022

Source of Sample

: Mankahari Village -- Hand Pump

Sample ID Code

: ELW-15285

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STANDARDS as per IS 10500:1991(Reaff;2012)		
					Desirable	Permissible	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23 rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	1,10	1 - 100	1.0	5.0	
5.	рН	APHA, 23rd Ed. 2017, 4500H+ A+B	7.43	2.0 -12	6.5-8-5	No Relax.	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23 rd Ed. 2017, 2540-C	665.0	5 - 5000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23 rd Ed. 2017, 2320 A+ B	188.0	5-1500	200	600	
8.	Total Hardness as CaCO3 (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	288.0	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Ca A+B	73,60	5 – 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0	
11.	Chloride as CI (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	56.0	5-1000	250.0	1000.0	
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.45	0.05-10	1.0	1.5	
13.	Sulfate as SO ₄ (mg/l)	APHA, 23 rd Ed. 2017, 4500-SO ₄ ² E	96.0	1.0 -250	200.0	400.0	
14.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23rd Ed. 2017, 4500-NO ₃ B	15.65	5.0 - 100	45.0	No Relax.	
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0,30	
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.27	0.02-50	5.0	15	
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.	
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax	
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax	
20.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05	
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax	
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.	
23	Copper as Cu (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5	
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.24	0.2 - 10	0.5	1.0	
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2	
26.	Free Residual Chlorine (mg/l)	APHA, 23 rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0	
27.	Sulphide as H ₂ S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax	
28.	Iodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 - IB	BDL	0.1-10	-	-	
29.	Iron as Fe (mg/l)	APHA, 23 rd Ed. 2017, 3500 Fe B	0.15	0.02-50	0.3	No Relax.	
30.	Total coliform (MPN/100 m!)	APHA, 23 rd Ed. 2017, 9221 B+C	Absent	1.8	Absent	Absent	
31.	E.coli (Nos/100)	APHA, 23rd Ed. 2017, 9221B+E	Absent	1.8	Absent	Absent	

*The result are related only to item tested.

BDL = Below Detection Limit

Verified By

Technical Manager

Authorized By

Quality Manager

Ecomen Laboratories Pvt. Ltd. Second Floor Hall, House No. B-1/8,

AIR QUALITY MONITORING REPORT FOR MINES MONTII - OCTOBER YEAR-2021

1 NAME & ADDRESS OF FACTORY

PRISM JOHNSON LTD

PRISM CEMENT LIMESTONE MINES

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

POST: BATHIA

DISTT : SATNA (M.P.)- 485111

Swati Vaish

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING

1. DURATION

2. DISTANCE FROM FACTORY

3. WIND DIRECTION

8X3=24 Hrs.

LOCATION (1) - SW (BP No. 18)

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area

LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

Wind Direction From SE SE
Location (4) 10 SO2 NOX CO 13 ug/M3 ug/M3 ug/M3 ug/M3 15 37.8 40.45 BDL 14 36.45 39.55 BDL
Location (4) SO2 Nu 3 ug/M3 ug 37.8 40
1 5 5 M. C.
NOX CO I NOX CO I 137.21 BDL 36.4 BDL
SO2 ug/M3 1 34.43
PM2.5 PM10 3 ug/M3 ug/M3 24.89 46.29 26.04 55.47
Location (2) 10 SO2 NOX CO P W3 lug/M3 ug/M3 ug/
Location (2) 110 SO2 NOX C M3 ug/M3 ug/M3 ug 92 38.19 42.65 B 27 41.66 43.14 B
CO PM2.5 PM10 S
1) NOX CO ug/M3 ug/M3 44.94 BDL 45.6 BDL
SO2 ug/M3 39.49 42.53
1 PM10 59.34 59.31
No. Date PM2.5 I ug/M3 u ug/M3 u l 09.10.21 29.14 2 24.10.21 31.2 BDL - Below Detectable Limit
No. 1 0 2 2 2 BDL - Below

Sr. Manager- Environment Sumitabh Dwivedi

Prism Johnson Ltd. Satna (M.P.)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - NOVEMBER YEAR-2021

I NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT 3 AMBIENT AIR QUALITY MONITORING

2. DISTANCE FROM FACTORY

1. DURATION

3. WIND DIRECTION

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

POST: BATHIA

DISTT: SATNA (M.P.)- 485111

Swati Vaish

8X3=24 Hrs.

LOCATION (1) - SW (BP No. 18)

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area

LOCATION (3) - Near Mankahari Village

LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

> = =	SE
X X 8 X	BDL BDL
DX CO PM2 5 PM10 SO2 NK	
100 (3) 100	
VX CO PM2.5 1 BDL 27.07 1 BDL 28.14	
SO2 NOX 189/M3 ug/M3 1838.48 39.71 39.49 39.71	
Location (3) O2 NOX CO PMZ.5 PMIO SO2 NO //M3 ug/M3 ug/	
PM2.5 43 ug/M3 t 1. 26.04 1. 27.42	
(2) NOX CO ug/M3 ug/M3 48.54 BDL 44.94 BDL	
CO PM2 5 PM10 SO2 NOX C VM3 ug/M3 ug	
PM2 5 PM ug/M3 ug/ 29 02 57 31 11 60	
10 NOX CO PM2 5 PM10 SO2 NOX CC A3 ug/M3 u	
PM2.5 PM10 SO2 NU Ug/M3 ug	
PM2 S PM10 SO2 N ug/M3	
Date PM 108/11.21 30 22 11.21 33 W Detectable Li	
No Date PM2.5 F 1 1 1 1 1 1 1 1 1	
0	

Swati Vaish

Dy. Manager- Environment

Prism Johnson Ltd. Satna (M.P.)

Prism Johnson Ltd. Satna (M.P.) Manoj Kumar Kashyap Asst. Vice President

AIR QUALITY MONITORING REPORT FOR MINES MONTH - DECEMBER YEAR - 2021

I NAME & ADDRESS OF FACTORY

PRISM JOHNSON LTD

PRISM CEMENT LIMESTONE MINES

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

POST: BATHIA

DISTT: SATNA (M.P.)- 485111

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING

1. DURATION

2. DISTANCE FROM FACTORY

3. WIND DIRECTION

Swati Vaish

LOCATION (1) - SW (BP No. 18) 8X3=24 Hrs.

LOCATION (2) - Near Western side ML boundary (Pillar No 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinoutt Village

MENTIONED IN THE TABLE

	Direction	+	\perp	SE
Location (4)	PM2.5 PM	ug/M3 ug/M3 ug/M3 ug/M3	28.87 57.88 41.98 42.65 BDL	29.28 60.25 41.31 41.6 BDL
Location (3)	PM10 SO2 NOX CO	g/M3 ug/M3 ug/M3 ug/M3 ug/M3	27.07 55.78 39.77	28.13 59.44 40.5 39.71 BDL
cation (2	ug/M3 ug/M3 ug/M3	30.3	31.	DDC 47.15 DDC
PM2 5 PM10 SO2 NOX CO	3 ug/M3 ug/M3	BDL	32.11 64.06 45.13 45.07 BDL	
No. Date		1 06.12.21	2 20.12.21	BDL - Below Detectable Limit

Prism Johnson Ltd. Satna (M.P.) Manoj Kumar Kashyap Asst. Vice President

Prism Johnson Ltd. Satna (M.P.) Sr. Manager- Environment Sumitabh Dwivedi

AIR QUALITY MONITORING REPORT FOR MINES MONTH -JANUARY 2022

I NAME & ADDRESS OF FACTORY

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA PRISM CEMENT LIMESTONE MINES PRISM JOHNSON LTD

POST: BATHIA

DISTT: SATNA (M.P.)- 485111

Garima Sharma

2 NAME OF PERSON PREPARED THE REPORT

3 AMBIENT AIR QUALITY MONITORING

1. DURATION

2. DISTANCE FROM FACTORY

3. WIND DIRECTION

LOCATION (1) - SW (BP No. 18)

8X3=24 Hrs.

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

	Wind	Dissolution	From		JAC	33
	Location (4)	PM2.5 PM10 SO2 NOX CO	ug/M3 ug/M3 ug/M3 ng/M3	29.26 39.38 38.88 40.45 BDI	2000	50.5 61.75 40.5 42.07 RDI
	Location (3)	M3 ug/M3 ug/	5 44.84 BD. 29.73 61.29 20.40 4.84 BD. 29.73 61.20 4.84 BD. 29.	26.4 54.54 38.48 37.75 BDL 2	28.03 57.73 39.49 38.24 BDI	100 13:00
(C) mortions	PM7 5 PM10 803 NOW GO	ue/M3 ue/M3 ne/M3 ne/M3	29.73 61.29 39.49 42.69 BEST U	29.82 69.94 43.74 40.00	1019 84:44 44:43 BIJ	
Location (1)	PM2.5 PM10 SO2 NOX CO	ug/M3 ug/M3 ug/M3 ug/M3 ug/M3	30.51 57.51 40.5 44.84 BDL	32.98 66.93 44.19 45.3 BDL		
S	No Date I		1 08 01.2022	2 21 01.2022	BOL Bolow Dotostation	DOL BEIOW DETECTABLE LITTLE

Prism Johnson Ltd. Satna (M.P.) Sr. Manager- Environment Sumitabh Dwivedi

AIR QUALITY MONITORING REPORT FOR MINES MONTH - FEBURARY 2022

1 NAME & ADDRESS OF FACTORY

PRISM JOHNSON LTD

PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA

POST: BATHIA DISTT: SATNA (M.P.)- 485111

2 NAME OF PERSON PREPARED THE REPORT 3 AMBIENT AIR QUALITY MONITORING

1. DURATION
2. DISTANCE FROM FACTORY

3. WIND DIRECTION

Garima Sharma

8X3=24Hrs.

LOCATION (1) - SW (BP No. 18)
LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area
LOCATION (3) - Near Mankahari Village
LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

Wind Direction From SE NE
Location (3) Location (3) Location (4) Location (4) Location (4) Location (5) Location (7) Loca
(4) NOX 3 ug/M3 41.35 3 41.8
Location (4) 10 SO2 W3 ug/M3 ug/M3 u
Loca PM 2.5 PM10 ug/M3 ug/M3 u 28.84 58.44 30.06 60.15
CO PN UB/M3 UB BDL 28 BDL 30
NOX ug/M3 u 39.71
Location (3) 10 SO2 13 ug/M3 u
Loc ug/M3 ug/M3 28.79 56.23 29.61 56.88
CO PM 2.5 PBDL 28.79 BBL 28.79
OX /M3 L 4.49 3.68
Location (2) 10 SO2 N W3 ug/M3 ug 88 40.5 4 47 43.74 41
PM 2.5 PM10 ug/M3 ug/M3 31.04 61.88 33.26 64.47
CO PM 2.5 P 3 ug/M3 ug/M3 ug 8 BDL 31.04 E 8 BDL 33.26 G
NOX NOX 16.74 8.54
Location (1) PM 2.5 PM10 SO2 ug/M3 u
PM 2.5 PM10 ug/M3 ug/M3 32.49 62.62 34.18 64.96 Limit
Date F P 19.02.2022 99.02.2022 9 v Detectable Lin
Si
No. 1 2 2 8DL -

Prism Johnson Ltd. Satna (M.P.) Sr. Manager- Environment Sumitabh Dwivedi

AIR QUALITY MONITORING REPORT FOR MINES MONTH - MARCH 2022

1 NAME & ADDRESS OF FACTORY

2 NAME OF PERSON PREPARED THE REPORT 3 AMBIENT AIR QUALITY MONITORING

1. DURATION 2. DISTANCE FROM FACTORY

3. WIND DIRECTION

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST: BATHIA

DISTT : SATNA (M.P.)- 485111

Garima Sharma

8X3=24Hrs.

LOCATION (1) - SW (BP No. 18)
LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area
LOCATION (3) - Near Mankahari Village
LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

			7	-		00			,	_	I							
			\A/!	MAILIO	-	Direction					-	300			L.	1		
					0	3			2/V/01	26/10	0	9			BDL			
					200	YON.		1.00	× M	0	440	, t		100	47.07			
			Location (4)		000	200		2 /4 47	2 × ×	3	70 00	11.00		70 5				
			000		DM110	21		CVV/D	10/10/10		50 05		L	62 27	17.70			
					PM 2 5 PM10			2/V/5	EVIVIO		31 50			40 Q2				
		_		-			1	/M3	0	1	80[+	_	RDI	+			
					Š			WY.	0		39.1 B	+	-	40.45 H	-			
		(3)	(2)		SOZ NOX		(**)		0	70	0.70	+	20 40					
		Containo (3)	2000	2 0110	OTIVIT		CAA/	SINIS IN		1 55	0 07:70		57 62 3	00.				
				DAMOS			CVV/	CIAI		20 DE E		H	30 42 5					
	_			0	-		Ma	200		20		L	_	_				
		(2) (2)		č		M3 UE/M3 UE/		9		42.32 BDL			47.07 BDL					
	10/00			(2) 110		2C			/M3 ::p/	0		41.98 47						
	4000			N N N			/M3 uP	0		63.26	П	,	56.55 46.45					
				PM 25 PM			/M3 ug			31.13	t	_	20					
	_			2			M3 ug/	1	10	8UL 31	H		_					
			_	707			ug/M3 ug/		20	67.00	L	20 15 02						
1 = 1	Location (1)		_	_			MS UB	1			L	_						
	Locati		110 01	01		(,,,	M3 UB		00	5		75 77	1					
		-	DAM 2 5 DAM 10 CAN	7.7		011	UB/INIS UB/INIS UB/INIS		CC UV VY 65 CC XC	00.		36 88 70 45 A7 87	2					
_	_		DVG			, .	200	T			Г				ole Limit			
			a tr	,					200 2000	1.00.00.0		74 04 2022			BUL - Below Detectable Limit			
_							_		50	5					- Below			
	2		S							1	_	7		0	BUL			

Prism Johnson Ltd. Satna (M.P.) Sr. Manager- Environment Sumitabh Dwivedr

AMBIENT NOISE MONITORING REPORT

MONTH- OCTOBER 2021

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti&Sijahata

Post - Bathia

Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Swati Vaish

3. Details of noise monitoring

٠_

:

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	22.10.2021	58.8	53.60
2	Near Western side ML boundary (Pillar No. 14) of ML area	22.10.2021	57.45	50.62
3	Mankahari Village	22.10.2021	53.6	46.97
4	Hinouti village	22.10.2021	55.12	48.17

Sumitabh Dwivedi

Sr. Manager – Environment

AMBIENT NOISE MONITORING REPORT

MONTH- NOVEMBER YEAR -2021

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti&Sijahata

Post - Bathia

Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Swati Vaish

3. Details of noise monitoring

:-

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	20.11.21	59.95	53.07
2	Near Western side ML boundary (Pillar No. 14) of ML area	20.11.21	58.1	51.77
3	Mankahari Village	20.11.21	56.12	50.25
4	Hinouti village	20.11.21	57.00	50.47

Justi

Swati Vaish

Dy. Manager - Environment

AMBIENT NOISE MONITORING REPORT

MONTH- DECEMBER YEAR -2021

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti Sijahata

Post - Bathia

Dist - Satna (M.P) - 485111

2. Name of person prepared the report

: Swati Vaish

3. Details of noise monitoring

:-

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	18.12.21	59.32	53.67
2	Near Western side ML boundary (Pillar No. 14) of ML area	18.12.21	58.27	50.5
3	Mankahari Village	18.12.21	55.67	49.55
4	Hinauti village	18.12.21	56.65	50.12

Sumitable Dwivedi

Sr. Manager – Environment

AMBIENT NOISE MONITORING REPORT

MONTH- JANUARY YEAR -2022

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti Sijahata

Post - Bathia Dist - Satna (M.P) - 485111

2. Name of person prepared the report

: Garima Sharma

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	24.01.22	58.01	52.02
2	Near Western side ML boundary (Pillar No. 14) of ML area	24.01.22	58.3	51.22
3	Mankahari Village	24.01.22	54.05	48.05
4	Hinauti village	24.01.22	56.3	50.57

Sumitabh Dwivedi

Sr. Manager – Environment

AMBIENT NOISE MONITORING REPORT

MONTH- FEBRUARY YEAR -2022

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti Sijahata

Post - Bathia

Dist - Satna (M.P) - 485111

2. Name of person prepared the report

: Garima Sharma

3. Details of noise monitoring

:-

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	21.02.2022	60.95	52.9
2	Near Western side ML boundary (Pillar No. 14) of ML area	21.02.2022	58.8	51.95
3	Mankahari Village	21.02.2022	56.5	50.9
4	Hinauti village	21.02.2022	57.9	51.87

Sumitabh Dwivedi

Sr. Manager – Environment

AMBIENT NOISE MONITORING REPORT

MONTH- MARCH YEAR -2022

1. Name and address of Factory

: PRISM JOHNSON LTD.

Prism Cement Limestone Mines Village- Mankahari, Hinauti Sijahata

Post - Bathia

Dist - Satna (M.P) - 485111

2. Name of person prepared the report

: Garima Sharma

3. Details of noise monitoring

S. No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	14.03.2022	61.85	55.15
2	Near Western side ML boundary (Pillar No. 14) of ML area	14.03.2022	59.62	53.97
3	Mankahari Village	14.03.2022	57.52	51.35
4	Hinauti village	14.03.2022	58.92	52.8

Sumitabh Dwivedi Sr. Manager – Environment